ANOMALOUS THERMOMECHANICAL BEHAVIOUR OF CARBON NANOTUBE BUNDLE

S.V. Dmitriev1,2, L.Kh. Galiakhmetova1 and E.A. Korznikova1,2

1Institute for Metals Superplasticity Problems, Russian Academy of Sciences, Khalturina 39, Ufa 450001, Russia
2Institute of Molecule and Crystal Physics, Ufa Research Center of Russian Academy of Sciences, Prospekt Oktyabrya 151, Ufa 450075, Russia

Received: December 15, 2021

Abstract. The molecular dynamics method is used to calculate the dependence of pressure on temperature at a constant volume for a bundle of carbon nanotubes (CNTs) considered under plane strain conditions. A chain model with a significantly reduced number of degrees of freedom is used for modeling. The influence of the CNT diameter is analyzed. It was found that for some parameters of the model, the pressure in the CNT bundle can decrease with increasing temperature, which is equivalent to the effect of negative thermal expansion.

Acknowledgements
This work was partly supported by the State Assignment of IMSP RAS, theme No. AAAA-A19-119021390108-5. The simulation was partially carried out on a supercomputer of the RAS Supercomputer Center.

REFERENCES
[16] Yuzhu Song, Qiang Sun, Meng Xu, Ji Zhang, Yiqing Hao, Yongqiang Qiao, Shantao Zhang, Qingzhen Huang, Xianran Xing and Jun Chen, Negative thermal expansion in (Sc,Ti)Fe$_2$ induced by an unconventional magnetovolume effect, Mater. Horizons, 2020, vol. 7, pp. 275-281.

(c) ITMO 2021